

Titanium Rotors in Military Aero Engines - Designed to Weight and Life

Jürgen Broede MTU Aero Engines GmbH

AVT Specialist's Meeting Cost Effective Application of Titanium Alloys in Military Platforms

7 - 11 May 2001 Loen, Norway

Engine Specification

- purpose of the engine
- mission profiles
- power and thrust
- fuel consumption
- engine size and weight
- reliability characteristics
- maintainability figures

Derived requirements for rotors

- functionality
- rotor life (6000 to 25000 cycles equivalent to 30 to 40 years in service)
- rotor weight (to be minimised)

Rotor parts

- exposed to elevated temperatures
- high loads
- high rotational energy
 - ⇒ significant damage in case of failure
 high safety levels are required
 classified as 'critical'
 - ⇒ turbine rotors: Nickel base superalloys compressor rotors: Titanium alloys

Titanium alloys demands

- commercial aerospace
 - air frames
 - aero engines

• military

- aerospace
- other military use
- non-aerospace commercial
 - golf club market
 - medical instruments

Characteristics of Titanium alloys

- high strength
- low density
- low Young's modulus
- low coefficient of thermal expansion
- remarkable corrosion resistance
- good ductility
- weldable and forgeable

Titanium alloys used in compressor rotor parts

	Characteristics	Temperature Range	Cost
Ti 6-4	good tensile properties, creep resistance, high fatigue strength	up to 325 °C	100 %
Ti 6-2-4-6	higher strength at elevated temperatures	up to 450 °C	160 - 170 %
Ti 6-2-4-2	good tensile and creep properties	up to 540 °C	125 - 130 %
IMI 834	increased tensile strength, creep resistance, acceptable fatigue strength	up to 600 °C	380 - 400 %

Temperature

Breaking length of Titanium alloys (compared with Nickel)

Life Cycle Costs

Cost of development

conceptual and detailed design design verification and validation in-service development and modifications

• Cost of procurement (investment) production and engineering support engine support investment (e.g. spares) quality control and warranties

Cost of ownership

operating personnel and consumables (e.g. fuel, oil) material (spare parts) and maintenance man hours

Modern compressor design

improved compressor efficiency (combined with carefree handling, low weight, short length) requires

- low number of stages
- low number of blades per stage
- robust wide chord airfoils

which cause extremely high stresses in conventional blade root fixings

- \rightarrow blisk (bladed disk) \Rightarrow saves weight, avoids extremely high stresses
- \rightarrow bling (bladed ring) \Rightarrow saves more weight, increases stresses

Improvement of design process

- integrated teams with members of all disciplines
- reviews with participation of experienced specialists
- monitoring the technical progress and project costs
- application of improved tools and improved assessment techniques
- better simulation and more precise prediction
- reduced test efforts

Re-assessment of a given component

Comparison of a component designed in 1979 and re-assessed in 1999

- FE tools and computing capacity dramatically improved
- accuracy improved due to finer FE meshes
- computing time reduced (but additional load cases investigated)
- costs saved: reduced computing and assessment time
- additional non-countable value: increased confidence in design

Coarse FE mesh for RB199 IPC (1979)

Refined FE mesh for RB199 IPC (1999)

Examples for cost reduction in manufacturing

- for certain compressor blades low surface roughness was specified to obtain the required efficiency; however, it turned out that the same efficiency could be achieved with increased roughness.
- changing the reference system for dimensioning of another rotor blade could reduce the rejection rate; quality was significantly improved without additional costs.
- the number of critical features indicated in some design drawings could be reduced to such really necessary; test and documentation expenditure were thereby minimised.
- tolerance bands could be extended for certain geometric dimensions without negative effects to the properties of the components.
- some manufacturing steps (e.g. deburring) which were done manually in the past, can now be replaced by machine manufacturing.

Exploitation of part's life potential

- what is the real life potential of the part?
- how is life consumed under operational usage?

Means for cost reduction

- improvement of the lifing concept and the life prediction procedures
- utilisation of a portion of the crack propagation life
- accurate accounting of life consumption during operational usage

Concepts to establish component life

• Crack initiation life

- a new part is free of defects
- a defect (e.g. a fatigue crack) is generated in service
- the part's life is expired when the defect has been created

• Crack propagation life

- a new part contains an initial defect (where the defect behaves like a crack)
- the crack propagates under service loading
- the part's life is expired when the crack enters the phase of part dysfuction
- Safe life (crack initiation and crack propagation) the part's life is the number of cycles which the weakest individual of a population can endure until the life expiration criterion is reached

Crack propagation at the RB199 IPC rotor

Monitoring the life consumption

Methods established for life usage monitoring

- traditional method based on flight time and β -factors
- individual on-board life usage monitoring

The individual method is equivalent to the process of structure mechanical assessment, i.e.

- actual mission profile (including engine intake conditions, pilot's reactions, etc.)
- calculation of performance parameters (thermal and mechanical boundary conditions)
- transient temperature development within components
- transient stresses (or strains) at critical locations of the parts
- accumulation of critical area damage

Flight Time (EFH)

Life consumption versus flight time

Costs and benefits of a fleet wide individual life usage monitoring system

- significant invest for system development and introduction
- savings achieved with OLMOS: ten times higher than invest

Observations (providing additional non-countable value)

- actual distribution of fleet wide life consumption per engine
- in average, parts can be kept in service twice as long as with the traditional method
- risk of using a part in excess of the released life is avoided

Frequency distribution of cumulated life consumption

Conclusion

- Titanium alloys are used 'traditionally' in aero engine compressor rotors
- high strength and low density are key characteristics to fulfil the requirements
- Titanium alloys for higher stresses and increased temperatures drive costs
- improved concepts to establish component's life potential
- improved methods to monitor life consumption